CELMEMRILIANS VIEWS

TOPIC: SITHOUWMTV SHADOW PROJJCCIION

RESEARCHER VIEW

Shadows and projections Students investigate orthogonal projection in space using
light source, concrete models of polyhedrons, and their shadows. This is an excellent example of experiential learning that allows a full experience of this complex and often difficult for students to understand mathematical concepts. The acquired knowledge is connected with Eratosthenes' acquired knowieage is connected with Eratosthenes
experiment and Thales' theorem. In addition to the experiment and Thaies theorem. In addition to the 2D forms (front view, top view, and side view), the students go 2D forms (front view, top view, and side view), the students go
a step further in their research and investigate the a step further in their research and investigate the
stereographic projection that uses polar and equatorial networks and has its great application in structural geology.
Through their participation and work on this proiect, the Through their participation and work on this project, the
students enriched their previously acquired mathematical students enriched their previously acquired mathematical
knowledge, connected it with concrete life examples, and opened the door to some new and different representations of

Researcher

Researcher

AR'TISTIC VIEW
 in relation to the observed object or objects in everyday life situations through the game. Thus, using the medium of photography, they most easily record the moments of
the game of light-shadow-silhouette as in a photograph taken in nature where a group of people is in the forearound in relation to the space in which neture where. In the photo around the group of people, there is also a representation of the setting sun as a
refiection in "realistic" colors, while the obiects of the people are actually silhouettes in dimmed colors that are limited by imprecise or unsharo boundary lines. This photo is a great example of the difference between a silhouette and a shadow because, in relation to the background, the lower part of the photo is still visible in contact with the environment, so we can conclude with certainty that it is a silhouette of a group of
people and not a recorded representation of their shadows, i.e. refiections in space. In the example of the second photo, which shows a row of beach umbrellas in the
foreground while the sea and sky are in the backoround, we see a realistic representation of the reilection of the object's shadows in relation to the refiraction of light in nature during the sun's daily reflection. In the next photo, in a space like a room, moment of approaching or moving away from the light source in this example of a lamp
that refilects a shadow of a certain pattern towards the surface or table while the student observer records the whole experience from his perspective with a mobile
ste silhouette, which is a hand and a mobile phone in one plan, a light source in another plan, and third is the shadow of a pattern on the table, which at the same time
encompasses the larcest soace or plan of this photooranh. Using the example of a encompasses the largest space or plan of this photograph. Using the example of a
series of three photos showing three dififerent objects in space, the students showed an object that is in the play of shadow and light. The object in each photo is different and is
located in the middle of the space, i.e. in the center of the photo. The objecis are shown in different colors, and we have the impression that the object was photographed in a
studio room. In contrast, the shadows on the walls around the object are shadows that the objects reiflect firom themselves on walls that intersect at right angles so that th
shadows are completely dififerent and dependent on the refraction of light from th

Artist

COMMON VIEW

shadow

silhouette

stereographic projection

Why three topics in one?
Because they are closely related:
To have a shadow(s) we need a source(s) of light(s) in front of an object
To have a silhouette we need an intense source of light behind the object we are photographing \rightarrow silhouette looks like a shadow
To have a stereographic projection we need a source of light inside a sphere \rightarrow stereographic projection is a result.of a shadow

Only for orthographic projection, we don't need any special conditions except stereoscopic vision and depth perception.

A bit of wisdom:
Turn your face to the sun and the shadows fall behind you.
Maori Proverb

